Chem. Ber. 114, 527 - 535 (1981)

Reaktionen von Lithio-aminofluorsilanen mit kovalenten Elementhalogeniden

Jutta Neemann und Uwe Klingebiel*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-3400 Göttingen

Eingegangen am 10. Juni 1980

Halogenverbindungen der Elemente Bor, Germanium, Phosphor und Arsen reagieren mit Lithioaminofluorsilanen (1a - e) unter Lithiumhalogenid-Abspaltung und Substitution ($\rightarrow 2a$, b, 3c, 4b, 5b, 5d, 6b). In Abhängigkeit von der Substituentengröße und den Reaktionsbedingungen wird außer Lithiumhalogenid Halogensilan abgespalten, wobei viergliedrige Ringe (8d, 10b, 11 b, 13b, 14b) entstehen. Bei der Reaktion von 1e mit (Me₃Si)₂NPF₂ wird das Aminoiminophosphan 9e unter zusätzlicher 1,3-Silylgruppenwanderung vom Alkyl- zum Arylaminstickstoff gebildet. 5d reagiert mit lithiiertem (2,4,6-Trimethylphenyl)(trimethylsilyl)amin zu 15d und LiF. Das Aminoiminophosphan 16d wird durch thermische Difluorsilan-Abspaltung aus 15d erhalten. Ein Aminoiminodifluorphosphan (12b) entsteht bei der Reaktion von 1b mit PF₅ unter Abspaltung von Isobuten, *tert*-Butyldifluorphenylsilan und LiF.

Reactions of Lithio-aminofluorosilanes with Covalent Element Halides

Halides of boron, germanium, phosphorus, and arsenic react with lithio-aminofluorosilanes (1a - e) with elimination of lithium halide and substitution ($\rightarrow 2a$, b, 3c, 4b, 5b, 5d, 6b). Depending on the bulkiness of the substituents and the reaction conditions, halosilanes are also cleaved off and four-membered rings (8d, 10b, 11b, 13b, 14b) are formed. The reaction of 1e with $(Me_3Si)_2NPF_2$ leads to the formation of the aminoiminophosphane 9e. A 1,3-migration of a silyl group from the alkyl- to the arylamino-nitrogen is observed in this reaction. 5d reacts with lithiated (2,4,6-trimethylphenyl)(trimethylsilyl)amine to give 15d and LiF. The aminoiminophosphane 16d is obtained by thermal difluorosilane elimination from 15d. An aminoiminodifluorophosphane (12b) is formed in the reaction of 1b with PF₅, isobutene, *tert*-butyldifluorophenyl-silane, and LiF being cleaved off.

Während das Reaktionsverhalten metallierter Silylamine gegenüber kovalenten Elementhalogeniden bereits Gegenstand zahlreicher Untersuchungen war¹), fehlen derartige Studien mit Lithio-aminofluorsilanen. Bisher konnten wir zeigen, daß Lithio-aminofluorsilane gegenüber ungesättigten ylidischen Verbindungen das Reaktionsverhalten von Silaiminen zeigen²). Mit Fluorsilanen und Trimethylzinnchlorid hingegen reagieren Lithio-aminofluorsilane unter LiHal-Abspaltung und Substitution zu thermisch sehr beständigen Verbindungen mit dem Grundgerüst >SiF - N - El < 3.

Ziel dieser Arbeit war die Darstellung neuer Verbindungstypen gleichen Grundbausteins mit Elementhalogeniden des Bors, Germaniums, Phosphors und Arsens. Für die Untersuchungen wählten wir Aminofluorsilane, die bei der Umsetzung mit Butyllithium bei Raumtemperatur die stabilen Lithiumsalze 1a - e bilden.

Chem. Ber. 114 (1981)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1981 0009 – 2940/81/0202 – 0527 \$ 02.50/0 1 a und b reagieren mit [Bis(trimethylsilyl)amino]difluorboran zu den bisher nicht beschriebenen N-substituierten Diaminofluorboranen 2a und b (Gl. (1)).

2b zerfällt bereits bei Raumtemperatur unter Spaltung der Si – N-Bindung und Bildung von *tert*-Butyldifluorphenylsilan und des 1,3,2,4-Diazadiboretidins $13b^{4}$ (Gl. (11)). Die erhöhte Stabilität von **2a** im Vergleich zu **2b** sollte sterisch bedingt sein. Die größeren Substituenten in **2b** begünstigen eine intramolekulare Fluorsilan-Abspaltung.

Die Umsetzung von 1c mit $BF_3 \cdot Et_2O$ verläuft im molaren Verhältnis 2:1 zu 3c (Gl. (2)), während die Lithiumsalze 1b bzw. d mit Germaniumtetrachlorid, Phosphortrifluorid und -trichlorid zu den erwarteten monosubstituierten, hydrolyseempfindlichen Verbindungen 4b, 5b, 5d und 6b reagieren (Gl. (3) – (5)).

Bei der destillativen Aufarbeitung von **6b** wird unter *tert*-Butylchlorfluorphenylsilan-Abspaltung die Bildung des 1,3,2,4-Diazadiphosphetidins $14b^{5}$ beobachtet (Gl. (12)).

Mit einer Aufschlämmung von 1d in n-Hexan reagiert PCl₃ im Molverhältnis 2:1 nicht unter Bildung eines Aminoiminophosphans (7d) (Gl. (6)). Trotz der im Vergleich zur P – Cl-Bindung stärkeren Si – F-Bindung entsteht unter Me₂SiF₂-Abspaltung der viergliedrige Heterocyclus 8d. Das in Gl. (6) formulierte Disubstitutionsprodukt wurde nicht isoliert. Die Darstellung eines Diaminofluorphosphans (15d) gelang bei Umsetzung von 5d mit lithiiertem (2,4,6-Trimethylphenyl)(trimethylsilyl)amin (Gl. (13)).

Bisher bekannte Aminoiminophosphane⁶⁾ wurden aus Verbindungen des Typs **15d** unter intramolekularer Halogentrimethylsilan-Eliminierung synthetisiert. In **15d** ist sowohl die FSiMe₃- als auch eine F_2SiMe_2 -Abspaltung denkbar (Gl. (14)). Beobachtet wird jedoch bei der thermischen Zersetzung von **15d** ausschließlich die Difluorsilan-Abspaltung zu **16d**.

Ein weiteres Aminoiminophosphan (9e) entsteht bei der Reaktion von 1e mit F_2PN -(SiMe₃)₂. Nicht abgefangen wurde dabei das Substitutionsprodukt (Gl. (7)). Analog Gl. (14) tritt eine Difluorsilan-Abspaltung ein.

9e wurde ¹H-NMR-spektroskopisch charakterisiert. Erklärt werden kann die Bildung von 9e mit einer 1,3-Silylgruppenwanderung, die nach vorausgegangener Difluorsilan-Abspaltung vom Bis(trimethylsilyl)amin-Substituenten zur primär gebildeten 2,4,6-Trimethylphenylimino-Gruppe erfolgt. Derartige Umlagerungen zum partiell negativer geladenen Stickstoff wurden bereits an anderen Systemen beobachtet⁷⁾.

Die Reaktion von **1b** mit Phosphortrihalogeniden führte zur Bildung der acyclischen Verbindungen **5b**, **5d** und **6b**. In vergleichbarer Umsetzung von **1b** mit AsF₃ wird kein offenkettiges Produkt, sondern der Heterocyclus **10b** als *cis/trans*-Isomerengemisch im Verhältnis 6:1 erhalten (Gl. (8)). Bei Zugabe von **1b** zu AsF₃ entsteht **11b** (Gl. (9)). Wie bereits in Gl. (6) und (11) aufgezeigt, erfolgt in diesen Reaktionen (Gl. (8) und (9)) die Ringbildung unter Difluorsilan-Abspaltung.

Tal	b.: Chemische Verschi	ebungen δ ¹ H, δ ¹⁹]	F, δ ²⁹ Si, δ ³¹ P und K	opplungskonstant	en J _{HF} , J _{SIF} , J _{PF} , J _{HP} ,	J _{PSi} , J _{FF} der dargest	ellten Verbindungen
	8 ¹ H ^{a)}	δ ¹⁹ Fa)	δ ²⁹ Si ^{b)}	δ ³¹ Ρ¢)	J _{HF} [Hz]	J _{SiF} [Hz]	J _{PF} , J _{HP} , J _{PSi} , J _{FF} [Hz]
2а	0.1 SiMe ₃ 0.15 SiMe ₃ 2.23 C ₆ H ₂ Me ₃ 6.8 C ₆ H,	22.8 SiF 82.6 BF	3.92 SiMe ₃ 9.65 SiF		1.2 FBNSi(CH ₃) ₃ 10.6 FSi(CH ₃) ₂ 1.2 FBNSi(CH ₃) ₂	4.7 FBNSiMe3 285.1 SiF 7.0 FBNSiMe2	
2 b	-0.03 SiMe3 0.25 SiMe3 1.09 SiCMe3 1.46 NCMe3 7.5 C4H	11.3 SiF 103.2 BF			2.2 FSICCH ₃ 1.5 FBNSICCH ₃		
3с	1.01 SiCMe ₃ ^{d)}	0.4 SiF 68.3 BF	–8.7 SiF			286.3 SiF 4.3 FBNSi	
4 b	1.32 SICMe ₃ 1.48 NCMe ₃ 7.7 C ₆ H ₅	24.5 SiF	– 3.27 SiF		1.2 FSiCCH ₃	275.4 SiF	
5 b	1.06 SICMe ₃ 1.38 NCMe ₃ 7.5 C ₆ H ₅	4.2 SiF 99.08 PF 103.13 PF	– 3.7 SiF	150.9 PF ₂		293.5 SiF 8.1 F ₂ PNSi	9.5 FPF 8 (± 1) FSiNPF 1260 PF 17.6 PNSiF 40 PNSiF
Sd	0.44 SiMe 1.5 NCMe ₃	21.6 SIF 104.3 PF ₂	11.0 SiF	163.11 PF ₂	7.2 FSiCH ₃ 1.6 F ₂ PNSiCH ₃	285 SiF 8.9 FPNSi	1215 PF 2.8 PNSiCH ₃ 16.2 PNSi
6 b	1.1 SiCMe ₃ 1.6 NCMe ₃ 7.5 C,H,	7.8 SiF		151.94 PCl ₂			36 FSINP
8d	0.57 SiMe ₂ 1.3 NCMe ₃		27.4 SiMe ₂	210 PCI			1.4 PNCCH ₃ 9.1 PNSi

Chem. Ber. 114 (1981)

36

			L	[ab. (Fortsetzung)			
	8 ¹ H ^{a)}	δ ¹⁹ Fa)	δ ²⁹ Si ^{b)}	δ ³¹ Ρc)	J _{HF} [Hz]	J _{SiF} [Hz]	J _{PF} , J _{HP} , J _{PSi} , J _{FF} [Hz]
15 d	- 0.12 SiMe ₂ 0.17 SiMe ₃ 1.5 NCMe ₃ 1.5 NCMe ₃ 2.2 2,6-Me ₂ C ₆ H ₂ 2.3 4-MeC ₆ H ₂	29.6 SiF 73.9 PF	6.9 SiF 10.7 SiMe ₃	155.6 PF	8 FSi(CH ₃) ₂	287.4 SiF 2.0 FPNSiMe ₃ 7.0 FPNSiMe ₂	1025.6 <i>PF</i> 1.4 <i>P</i> NSi(<i>CH</i> ₃) ₃ 2.5 <i>P</i> NSi(<i>CH</i> ₃) ₅ 39.1 <i>P</i> NSiMe ₃ 9 <i>P</i> NSiF
16 d	0.0 C612 0.14 SiMe3 1.34 NCMe3 2.18 C6H2Me3 6.85 CcH5		7.02 SiMe ₃	320.3			1.8 <i>P</i> = NCCH ₃ 3.4 <i>P</i> NSi
9e	0.08 SiMe ₃ 0.24 SiMe ₄ ®)			305.8			
11 P	1.2 SiCMe ₃ 1.4 NCMe ₃ 7.6 C ₆ H ₅	103.6 AsF 99.1 AsF	14.8 SiCMe ₃ 13.6 SiCMe ₃			6.2 FAsNSi 5.7 FAsNSi	
12 b	0.10 SiCMe ₃ 1.23 NCMe ₃ ¹⁾	11.2 SiF 100.5 PF ₂	– 21.4 SiF	– 14.0 PF ₂	1 FSiCCH ₃	285.7 SiF	967 PF 42.5 PNSi
^{a)} Ver CDCI	messen als 30proz. Lösur 3, H3PO4 externer Standá e2C6H2; 2.22 4-MeC6H2;	$\begin{array}{l} \text{gen in CH}_2\text{CI}_3, \\ \text{ird.} & = \ ^{\text{d}} \text{Weiter} \\ \text{6.8 } \text{C}_6\text{H}_2, & = \ ^{\text{l}} \end{array}$	FMS und C ₆ F ₆ interr e δ ¹ H-Werte: 1.75, 3.1 NH; 7.5 C ₆ H ₅ .	1. – ^{b)} 50proz. Lős 1.86, 2.08 C ₆ H ₂ Mé	ungen in CH ₂ Ch/C 3; 6.2, 6.47 C ₆ H ₂ ;	6F6, TMS intern ; 7.5 C6H5 e) W	^{c)} 30proz. Lösungen in eitere 8 ¹ H-Werte: 2.17

Mit PF_5 reagiert 1b zum Aminoiminodifluorphosphan 12b. Als weitere Reaktionsprodukte entstehen neben LiF *tert*-Butyldifluorphenylsilan und Isobuten (Gl. (10)).

Im Vergleich zu thermisch stabilen Substitutionsprodukten des Siliciums³⁾, Germaniums (4b) und Zinns³⁾ wird also bei Halogenverbindungen des Bors, Phosphors und Arsens in Abhängigkeit von der Ligandengröße Fluor(halogen)silan-Abspaltung unter Bildung von Heterocyclen (13b, 14b, 8d, 10b, 11b) oder Aminoiminophosphanen (9e, 16d) beobachtet.

Die den NMR-Spektren zu entnehmenden Parameter der neu dargestellten Verbindungen sind in der Tabelle aufgeführt. Das ¹H-NMR-Spektrum von **2b** zeigt für die zwei SiMe₃-Gruppen unterschiedliche chemische Verschiebungen (-0.03 und 0.25ppm). Über eine Raumkopplung ist die Größe der ⁶J_{HF}-Kopplung (1.5 Hz) der SiCMe₃-Gruppe zu erklären.

Grundsätzlich verschieden ist das Bild der ¹⁹F-NMR-Spektren von **5b** und **5d**. **5d** zeigt im PF₂-Bereich das erwartete Dublett. In **5b** sind, bewirkt durch das chirale Silicium, die Fluoratome des Phosphors nicht äquivalent und treten bei 99.08 bzw. 103.13 ppm mit gleichen J_{PF} -Kopplungen von 1260 Hz sowie ² J_{FF} -Kopplungen von 9.5 Hz in Resonanz. Das PF-Signal bei tieferem Feld weist zusätzlich eine ⁴ J_{FF} -Kopplung von 8 (± 1) Hz auf und erscheint somit als Dublett von Pseudotripletts. Ein Dublett von Dubletts mit ³ J_{PF} = 17.6 und ⁴ J_{FF} = 8 (± 1) Hz zeigt der Fluorsilyl-Bereich von **5b**.

Die starken Tieffeldverschiebungen in den ³¹P-NMR-Spektren von **16d** (320.3 ppm) und **9e** (305.8 ppm) sind für Verbindungen des zweifach koordinierten Phosphors zu erwarten. Der Heterocyclus **11b** wurde, wie aus den ¹⁹F- und ²⁹Si-NMR-Spektren ersichtlich, als *cis/trans*-Isomerengemisch im Verhältnis von ca. 3:1 isoliert. ¹H-NMR-Messungen in benzolischer Lösung zeigen ebenfalls vier Signale, die dem *cis/trans*-Isomerengemisch entsprechen: $\delta^{1}H = 1.10/1.14$ SiCMe₃, 1.30/1.40 NCMe₃. Die Strukturisomeren zeigen unterschiedliche ³J_{SiF}-Kopplungen von 5.7 und 6.2 Hz. Für **10b** ließ sich anhand des ¹⁹F-NMR-Spektrums ein *cis/trans*-Isomerengemisch von 6:1 ermitteln. Versuche zur Auftrennung der Isomerengemische wurden nicht unternommen.

Gefördert mit Hilfe von Forschungsmitteln des Landes Niedersachsen.

Experimenteller Teil

Die Versuche wurden unter Ausschluß von Luftfeuchtigkeit ausgeführt. Die Ausbeuten sind bezogen auf 0.10 mol Lithio-aminofluorsilan. – Massenspektren: CH 5 Spektrometer der Firma Varian MAT, 70 eV (Peaks bis Basispeak = 100% mit mehr als 5%, Molekülpeak auch bei geringerer Intensität). – ¹H- und ¹⁹F-NMR-Spektren: Bruker 60 E-Kernresonanzgerät. – ²⁹Si-NMR-Spektren: Bruker HX 8-Kernresonanzgerät. – ³¹P-NMR-Spektren: FT 80-Varian-Kernresonanzgerät.

Darstellung der Verbindungen 2a, b, 4b, 5b, 5d, 6b, 9e: 0.10 mol der jeweiligen (Monoorganylamino)fluorsilane in 100 ml Petrolether werden mit der äquimolaren Menge n-Butyllithium (15proz. Lösung in Hexan) bei Raumtemp. unter Rühren lithiiert. Nach beendeter Butanabspaltung werden 0.10 mol der zugehörigen Reagenzien (2a, b: $F_2BN(SiMe_3)_2$; 4b: GeCl₄; 5b, 5d: PF₃; 6b: PCl₃: 9e: $F_2PN(SiMe_3)_2$ eingeleitet bzw. in 50 ml Petrolether zugetropft. Anschließend wird 2 h unter Rückfluß erhitzt. Die Lösungsmittel werden i. Vak. entfernt und die entstandenen Pro-

dukte fraktioniert destilliert. Mit organischen Lösungsmitteln sind die dargestellten Verbindungen gut mischbar.

Darstellung der Verbindungen 3c, 8d, 11b: In 100 ml Petrolether werden 0.050 mol der jeweiligen Reagenzien (3c: $BF_3 \cdot OEt_2$; 8d: PCl_3 ; 11b: AsF_3) bei Raumtemp. vorgelegt. Unter Rühren wird eine Aufschlämmung von 0.10 mol der zugehörigen Lithio-aminofluorsilane in 100 ml Petrolether portionsweise zugefügt. Nach 2 h Erhitzen unter Rückfluß wird das Lösungsmittel i. Vak. entfernt. Die Rohprodukte werden fraktioniert destilliert. Der Heterocyclus 11b kristallisierte nach der Destillation aus und wurde zusätzlich sublimiert.

Darstellung der Verbindungen 15d, 16d: 0.10 mol Lithium-(2,4,6-trimethylphenyl)(trimethylsilyl)amid und 100 ml Petrolether werden unter Rühren mit der äquimolaren Menge des Difluorphosphans 5d in 100 ml des gleichen Lösungsmittels versetzt. Nach 1 h Erhitzen zum Sieden wird das Lösungsmittel i. Vak. entfernt. Die Reinigung der Produkte erfolgt über fraktionierte Destillation. Neben dem Aminoiminophosphan 16d werden Difluordimethylsilan und Diaminofluorphosphan als niedriger bzw. höher siedende Fraktion isoliert.

Darstellung von 12b: 0.10 mol tert-Butyl(tert-butylamino)fluorphenylsilan werden in 100 ml Petrolether bei Raumtemp. mit der äquimolaren Menge n-Butyllithium (15proz. Lösung in Hexan) lithiiert. Nach beendeter Butanabspaltung werden 0.050 mol PF_5 unter Eisbadkühlung eingeleitet. Nach 1 h Erhitzen zum Sieden werden die Lösungsmittel im Rotationsverdampfer entfernt. Die Reinigung des Rohproduktes erfolgt durch fraktionierte Destillation.

[Bis(trimethylsilyl)amino]fluor[(fluordimethylsilyl)(2,4,6-trimethylphenyl)amino]boran (2a): Sdp. 91 °C/0.01 Torr, Ausb. 22 g (55%). – MS (rel. Int. %): m/e = 400 (9) [M]⁺, 385 (11) [M – CH₃]⁺, 308 (7) [M – SiMe₃, – F]⁺, 293 (89) [M – SiMe₄, – F]⁺, 289 (15), 268 (41), 239 (100) [M – HN(SiMe₃)₂]⁺.

C₁₇H₃₅BF₂N₂Si₃ (400.5) Ber. C 50.98 H 8.81 Gef. C 50.55 H 9.29

[Bis(trimethylsilyl)amino][tert-butyl(tert-butylfluorphenylsilyl)amino][fluorboran (2b): Sdp. 110°C/0.01 Torr, Ausb. 33 g (75%). - MS: $m/e = 442 (\leq 1) [M]^+$, 427 (11) $[M - CH_3]^+$, 385 (60) $[M - C_4H_9]^+$, 371 (21), 329 (100).

C20H41BF2N2Si3 (442.6) Ber. C 54.27 H 9.34 Gef. C 55.47 H 9.35

Bis[(tert-butylfluorphenylsilyl)(2,4,6-trimethylphenyl)amino]fluorboran (3c): Sdp. 220 °C/0.1 Torr, Schmp. 136 °C, Ausb. 20 g (62%). – MS: m/e = 658 (19) [M]⁺, 601 (100) [M – C₄H₉]⁺.

C38H50BF3N2Si2 (658.8) Ber. C 69.28 H 7.65 Gef. C 69.21 H 8.11

[tert-Butyl(tert-butylfluorphenylsilyl)amino]trichlorgerman (4b): Sdp. 126°C/0.01 Torr, Ausb. 19 g (46%). – MS (⁷⁴Ge): m/e = 431 (≥ 1) [M]⁺, 374 (25) [M – Cl, – C₄H₉]⁺, 318 (100). C₁₄H₂₃Cl₃FGeNSi (431.4) Ber. C 38.98 H 5.37 Gef. C 39.43 H 5.77

[tert-Butyl(tert-butylfluorphenylsilyl)amino]difluorphosphan (5b): Sdp. $62^{\circ}C/0.01$ Torr, Ausb. 22 g (68%). – MS: m/e = 321 (7) [M]⁺, 265 (100) [M – C₄H₈]⁺.

C₁₄H₂₃F₃NPSi (321.4) Ber. C 52.32 H 7.21 Gef. C 52.9 H 8.0

[tert-Butyl(fluordimethylsilyl)amino]difluorphosphan (5d): Sdp. 66 °C/50 Torr, Ausb. 11 g (52%). - MS: m/e = 217 (9) [M]⁺, 202 (30) [M - CH₃]⁺, 162 (13), 155 (11), 114 (16), 106 (100).

C₆H₁₅F₃NPSi (217.3) Ber. C 33.17 H 6.96 Gef. C 33.63 H 7.36

[tert-Butyl(tert-butylfluorphenylsilyl)amino]dichlorphosphan (6b): Sdp. 106 °C/0.01 Torr, Ausb. 23 g (65%). – MS: m/e = 353 (9) [M]⁺, 296 (32) [M – C₄H₉]⁺, 261 (19) [M – C₄H₉, – Cl]⁺, 250 (10), 240 (15), 235 (46), 216 (58), 204 (42), 179 (41), 159 (100).

C14H23Cl2FNPSi (354.2) Ber. C 47.44 H 5.55 Gef. C 47.97 H 6.08

1,3-Di-tert-butyl-2-chlor-4,4-dimethyl-1,3-diaza-2-phospha-4-silacyclobutan (8d): Sdp. 53 °C/0.01 Torr, Ausb. 8.0 g (60%). - MS: m/e = 266 (21) [M]⁺, 251 (44) [M - CH₃]⁺, 231 (100) [M - Cl]⁺. C₁₀H₂₄ClN₂PSi (266.8) Ber. C 45.02 H 9.06 Gef. C 44.75 H 8.70

[(2,4,6-Trimethylphenyl)(trimethylsilyl)amino](trimethylsilylimino)phosphan (9e): Sdp. 102°C/0.01 Torr, Ausb. 10 g (30%). - MS: <math>m/e = 324 (77) [M]⁺, 309 (100) [M - CH₃]⁺.

C₁₅H₂₉N₂PSi₂ (324.6) Ber. C 55.51 H 9.01 Gef. C 55.0 H 9.0

l,3,4-*Tri-tert-butyl-2-fluor-4-phenyl-1*,3-*diaza-2-arsa-4-silacyclobutan* (**11b**): Sdp. 135 °C/0.01 Torr, Schmp. 74 °C, Ausb. 16 g (78%). – MS: m/e = 398 (2) [M]⁺, 383 (21) [M – CH₃]⁺, 379 (10) [M – F]⁺, 341 (82) [M – C₄H₉]⁺, 285 (40), 229 (100).

C18H32AsFN2Si (398.5) Ber. C 54.26 H 8.10 Gef. C 54.53 H 8.02

[tert-Butyl(tert-butylfluorphenylsilyl)amino]difluoriminophosphoran (12b): Sdp. 94 °C/0.01 Torr, Ausb. 4.0 g (22%). – MS: m/e = 336 (4) [M]⁺, 279 (100) [M – C₄H₉]⁺.

C14H24F3N2PSi (336.4) Ber. C 49.99 H 7.19 Gef. C 50.58 H 7.60

[tert-Butyl(fluordimethylsilyl)amino]fluor[(2,4,6-trimethylphenyl)(trimethylsilyl)amino]phosphan (15d): Sdp. 105 °C/0.01 Torr, Ausb. 12 g (30% neben 40% 16d). - MS: m/e = 404 (9) [M]⁺, 348 (32), 333 (65), 207 (100).

C18H35F2N2PSi2 (404.6) Ber. C 53.43 H 8.72 Gef. C 52.92 H 8.82

(tert-Butylimino)[(2,4,6-trimethylphenyl)(trimethylsilyl)amino]phosphan (16d): Sdp. 98 °C/ 0.01 Torr, Ausb. 12 g (40% neben 30% 15d). – MS: m/e = 308 (37) [M]⁺, 293 (39) [M - CH₃]⁺, 266 (24), 252 (62) [M - C₄H₉]⁺, 236 (42), 206 (21), 191 (26), 174 (28), 164 (100). C₁₆H₂₉N₂PSi (308.5) Ber. C 62.30 H 9.48 Gef. C 61.55 H 9.47

²⁾ U. Klingebiel, Chem. Ber. 111, 2735 (1978); Z. Naturforsch., Teil B 33, 950 (1978).

- ³⁾ U. Klingebiel, Z. Naturforsch., Teil B 33, 521 (1978); U. Klingebiel, D. Bentmann und J. Neemann, Z. Anorg. Allg. Chem. 447, 143 (1978).
- 4) E. Bachholz, Staatsexamensarbeit, Univ. Göttingen 1976.

- 6) E. Niecke und O. J. Scherer, Nachr. Chem. Techn. 23, 395 (1975).
- ⁷⁾ U. Klingebiel und J. Neemann, Z. Naturforsch., Teil B 35, 1155 (1980).
- ⁸⁾ G. A. Olah und A. A. Oswald, Can. J. Chem. 38, 1431 (1960); H.-J. Vetter, H. Nöth und W. Jahn, Z. Anorg. Allg. Chem. 328, 144 (1964).

[184/80]

¹⁾ D. Harris und M. F. Lappert, J. Organomet. Chem. Library 2, 13 (1976), und dort zitierte Lit.

⁵⁾ O. J. Scherer und P. Klusmann, Angew. Chem. **81**, 743 (1969); Angew. Chem., Int. Ed. Engl. **8**, 752 (1969).